Parte 1

Introducción al tutorial

../../../_images/FinishedTutorialPicture.png

Esta serie de tutoriales te mostrará cómo crear un juego FPS para un solo jugador.

A lo largo del curso de esta serie de tutoriales, cubriremos cómo:

  • Hacer un personaje en primera persona que pueda moverse, correr y saltar.
  • Hacer una máquina de estado de animación simple para manejar transiciones de animación.
  • Añadir tres armas al personaje en primera persona, cada una usando una forma diferente de manejar las colisiones de balas:
    • Un cuchillo (usando un Area)
    • Una pistola (Escenas de bala)
    • Un rifle (usando un Raycast)
  • Añadir dos tipos diferentes de granadas al personaje en primera persona:
    • Una granada normal
    • Una granada pegajosa
  • Añadir la habilidad de agarrar y lanzar nodos RigidBody
  • Añadir una entrada de mando (joypad) para el jugador
  • Añadir munición y recargar todas las armas que consumen munición.
  • Añadir munición y recuperadores de salud
    • En dos tamaños: grande y pequeño
  • Añadir una torreta automática
    • Que puede disparar usando objetos bala o un :ref:`Raycast <class_Raycast>
  • Añadir objetivos que se rompen cuando han recibido suficiente daño
  • Añadir sonidos que suenan cuando las armas disparan.
  • Añadir un menú principal simple:
    • Con un menú de opciones para cambiar el funcionamiento del juego
    • Con una pantalla de selección de nivel
  • Añadir un menú de pausa universal que podemos acceder desde cualquier lugar

Nota

Aunque este tutorial puede ser completado por principiantes, es altamente aconsejable completar Tu primer juego, si eres nuevo en Godot y/o en el desarrollo de juegos antes de pasar por esta serie de tutoriales.

Recuerda: Hacer juegos 3D es mucho más difícil que hacer juegos 2D. Si no sabes cómo crear juegos 2D es probable que tengas dificultades para desarrollar juegos 3D.

Este tutorial asume que tienes experiencia trabajando con el editor de Godot, que tienes experiencia básica de programación en GDScript y experiencia básica en el desarrollo de juegos.

Puedes encontrar los recursos de inicio para este tutorial aquí: Godot_FPS_Starter.zip

Los recursos de inicio proporcionados contienen un modelo 3D animado, un montón de modelos 3D para hacer niveles y algunas escenas ya configuradas para este tutorial.

Todos los recursos proporcionados (a menos que se indique lo contrario) fueron creados originalmente por TwistedTwigleg, con cambios/adiciones por la comunidad de Godot. Todos los activos originales proporcionados para este tutorial están liberados bajo la licencia MIT.

¡Siéntete libre de usar estos recursos como quieras! Todos los recursos originales pertenecen a la comunidad Godot, con los otros recursos pertenecientes a los enumerados a continuación:

Nota

El skybox es creado por StumpyStrust en OpenGameArt. El skybox utilizado está bajo licencia CC0.

La fuente utilizada es Titillium-Regular, y está licenciada bajo la SIL Open Font License, Version 1.1.

Truco

Puedes encontrar el proyecto terminado para cada parte en la parte inferior de la página de cada parte

Resumen

En esta parte vamos a hacer un jugador de primera persona que puede moverse alrededor del entorno.

../../../_images/PartOneFinished.png

Al final de esta parte tendrás personaje en primera persona un funcional, que puede moverse por el entorno del juego, correr, mirar a su alrededor con una cámara en primera persona basada en el ratón, que puede saltar, encender y apagar una linterna.

Preparando todo

Inicia Godot y abre el proyecto incluido en los recursos iniciales.

Nota

Aunque estos recursos no son necesariamente requeridos para utilizar los scripts proporcionados en este tutorial, harán que el tutorial sea mucho más fácil de seguir ya que hay varias escenas preconfiguradas que utilizaremos a lo largo de la serie de tutoriales.

En primer lugar, abre los ajustes del proyecto y ve a la pestaña «Mapa de Entradas». Encontrarás que ya se han definido varias acciones. Usaremos estas acciones para nuestro jugador. Siéntete libre de cambiar las teclas vinculadas a estas acciones si lo deseas.


Tomémonos un segundo para ver qué tenemos en los recursos iniciales.

En los recursos iniciales se incluyen varias escenas. Por ejemplo, en res:// tenemos 14 escenas, la mayoría de los cuales estaremos visitando a medida que avancemos en esta serie de tutoriales.

For now let’s open up Player.tscn.

Nota

There are a bunch of scenes and a few textures in the Assets folder. You can look at these if you want, but we will not be exploring through Assets in this tutorial series. Assets contains all the models used for each of the levels, as well as some textures and materials.

Making the FPS movement logic

Once you have Player.tscn open, let’s take a quick look at how it is set up

../../../_images/PlayerSceneTree.png

First, notice how the player’s collision shapes are set up. Using a vertical pointing capsule as the collision shape for the player is fairly common in most first person games.

We are adding a small square to the “feet” of the player so the player does not feel like they are balancing on a single point.

We do want the “feet” slightly higher than the bottom of the capsule so we can roll over slight edges. Where to place the “feet” is dependent on your levels and how you want your player to feel.

Nota

Many times the player will notice the collision shape being circular when they walk to an edge and slide off. We are adding the small square at the bottom of the capsule to reduce sliding on, and around, edges.

Another thing to notice is how many nodes are children of Rotation_Helper. This is because Rotation_Helper contains all the nodes we want to rotate on the X axis (up and down). The reason behind this is so we can rotate Player on the Y axis, and Rotation_helper on the X axis.

Nota

Had we not used Rotation_helper, we would’ve likely had cases of rotating on both the X and Y axes simultaneously, potentially further degenerating into a state of rotation on all three axes in some cases.

See using transforms for more information


Attach a new script to the Player node and call it Player.gd.

Let’s program our player by adding the ability to move around, look around with the mouse, and jump. Add the following code to Player.gd:

extends KinematicBody

const GRAVITY = -24.8
var vel = Vector3()
const MAX_SPEED = 20
const JUMP_SPEED = 18
const ACCEL = 4.5

var dir = Vector3()

const DEACCEL= 16
const MAX_SLOPE_ANGLE = 40

var camera
var rotation_helper

var MOUSE_SENSITIVITY = 0.05

func _ready():
    camera = $Rotation_Helper/Camera
    rotation_helper = $Rotation_Helper

    Input.set_mouse_mode(Input.MOUSE_MODE_CAPTURED)

func _physics_process(delta):
    process_input(delta)
    process_movement(delta)

func process_input(delta):

    # ----------------------------------
    # Walking
    dir = Vector3()
    var cam_xform = camera.get_global_transform()

    var input_movement_vector = Vector2()

    if Input.is_action_pressed("movement_forward"):
        input_movement_vector.y += 1
    if Input.is_action_pressed("movement_backward"):
        input_movement_vector.y -= 1
    if Input.is_action_pressed("movement_left"):
        input_movement_vector.x -= 1
    if Input.is_action_pressed("movement_right"):
        input_movement_vector.x += 1

    input_movement_vector = input_movement_vector.normalized()

    # Basis vectors are already normalized.
    dir += -cam_xform.basis.z * input_movement_vector.y
    dir += cam_xform.basis.x * input_movement_vector.x
    # ----------------------------------

    # ----------------------------------
    # Jumping
    if is_on_floor():
        if Input.is_action_just_pressed("movement_jump"):
            vel.y = JUMP_SPEED
    # ----------------------------------

    # ----------------------------------
    # Capturing/Freeing the cursor
    if Input.is_action_just_pressed("ui_cancel"):
        if Input.get_mouse_mode() == Input.MOUSE_MODE_VISIBLE:
            Input.set_mouse_mode(Input.MOUSE_MODE_CAPTURED)
        else:
            Input.set_mouse_mode(Input.MOUSE_MODE_VISIBLE)
    # ----------------------------------

func process_movement(delta):
    dir.y = 0
    dir = dir.normalized()

    vel.y += delta * GRAVITY

    var hvel = vel
    hvel.y = 0

    var target = dir
    target *= MAX_SPEED

    var accel
    if dir.dot(hvel) > 0:
        accel = ACCEL
    else:
        accel = DEACCEL

    hvel = hvel.linear_interpolate(target, accel * delta)
    vel.x = hvel.x
    vel.z = hvel.z
    vel = move_and_slide(vel, Vector3(0, 1, 0), 0.05, 4, deg2rad(MAX_SLOPE_ANGLE))

func _input(event):
    if event is InputEventMouseMotion and Input.get_mouse_mode() == Input.MOUSE_MODE_CAPTURED:
        rotation_helper.rotate_x(deg2rad(event.relative.y * MOUSE_SENSITIVITY))
        self.rotate_y(deg2rad(event.relative.x * MOUSE_SENSITIVITY * -1))

        var camera_rot = rotation_helper.rotation_degrees
        camera_rot.x = clamp(camera_rot.x, -70, 70)
        rotation_helper.rotation_degrees = camera_rot
using Godot;
using System;

public class Player : KinematicBody
{
    [Export]
    public float Gravity = -24.8f;
    [Export]
    public float MaxSpeed = 20.0f;
    [Export]
    public float JumpSpeed = 18.0f;
    [Export]
    public float Accel = 4.5f;
    [Export]
    public float Deaccel = 16.0f;
    [Export]
    public float MaxSlopeAngle = 40.0f;
    [Export]
    public float MouseSensitivity = 0.05f;

    private Vector3 _vel = new Vector3();
    private Vector3 _dir = new Vector3();

    private Camera _camera;
    private Spatial _rotationHelper;

    // Called when the node enters the scene tree for the first time.
    public override void _Ready()
    {
        _camera = GetNode<Camera>("Rotation_Helper/Camera");
        _rotationHelper = GetNode<Spatial>("Rotation_Helper");

        Input.SetMouseMode(Input.MouseMode.Captured);
    }

    public override void _PhysicsProcess(float delta)
    {
        ProcessInput(delta);
        ProcessMovement(delta);
    }

    private void ProcessInput(float delta)
    {
        //  -------------------------------------------------------------------
        //  Walking
        _dir = new Vector3();
        Transform camXform = _camera.GetGlobalTransform();

        Vector2 inputMovementVector = new Vector2();

        if (Input.IsActionPressed("movement_forward"))
            inputMovementVector.y += 1;
        if (Input.IsActionPressed("movement_backward"))
            inputMovementVector.y -= 1;
        if (Input.IsActionPressed("movement_left"))
            inputMovementVector.x -= 1;
        if (Input.IsActionPressed("movement_right"))
            inputMovementVector.x += 1;

        inputMovementVector = inputMovementVector.Normalized();

        // Basis vectors are already normalized.
        _dir += -camXform.basis.z * inputMovementVector.y;
        _dir += camXform.basis.x * inputMovementVector.x;
        //  -------------------------------------------------------------------

        //  -------------------------------------------------------------------
        //  Jumping
        if (IsOnFloor())
        {
            if (Input.IsActionJustPressed("movement_jump"))
                _vel.y = JumpSpeed;
        }
        //  -------------------------------------------------------------------

        //  -------------------------------------------------------------------
        //  Capturing/Freeing the cursor
        if (Input.IsActionJustPressed("ui_cancel"))
        {
            if (Input.GetMouseMode() == Input.MouseMode.Visible)
                Input.SetMouseMode(Input.MouseMode.Captured);
            else
                Input.SetMouseMode(Input.MouseMode.Visible);
        }
        //  -------------------------------------------------------------------
    }

    private void ProcessMovement(float delta)
    {
        _dir.y = 0;
        _dir = _dir.Normalized();

        _vel.y += delta * Gravity;

        Vector3 hvel = _vel;
        hvel.y = 0;

        Vector3 target = _dir;

        target *= MaxSpeed;

        float accel;
        if (_dir.Dot(hvel) > 0)
            accel = Accel;
        else
            accel = Deaccel;

        hvel = hvel.LinearInterpolate(target, accel * delta);
        _vel.x = hvel.x;
        _vel.z = hvel.z;
        _vel = MoveAndSlide(_vel, new Vector3(0, 1, 0), false, 4, Mathf.Deg2Rad(MaxSlopeAngle));
    }

    public override void _Input(InputEvent @event)
    {
        if (@event is InputEventMouseMotion && Input.GetMouseMode() == Input.MouseMode.Captured)
        {
            InputEventMouseMotion mouseEvent = @event as InputEventMouseMotion;
            _rotationHelper.RotateX(Mathf.Deg2Rad(mouseEvent.Relative.y * MouseSensitivity));
            RotateY(Mathf.Deg2Rad(-mouseEvent.Relative.x * MouseSensitivity));

            Vector3 cameraRot = _rotationHelper.RotationDegrees;
            cameraRot.x = Mathf.Clamp(cameraRot.x, -70, 70);
            _rotationHelper.RotationDegrees = cameraRot;
        }
    }
}

This is a lot of code, so let’s break it down function by function:

Truco

While copy and pasting code is ill advised, as you can learn a lot from manually typing the code in, you can copy and paste the code from this page directly into the script editor.

If you do this, all of the code copied will be using spaces instead of tabs.

To convert the spaces to tabs in the script editor, click the «edit» menu and select «Convert Indent To Tabs». This will convert all the spaces into tabs. You can select «Convert Indent To Spaces» to convert tabs back into spaces.


First, we define some class variables to dictate how our player will move about the world.

Nota

Throughout this tutorial, variables defined outside functions will be referred to as «class variables». This is because we can access any of these variables from any place in the script.

Vamos a repasar cada una de las variables de clase:

  • GRAVITY: How strong gravity pulls us down.
  • vel: Our KinematicBody’s velocity.
  • MAX_SPEED: The fastest speed we can reach. Once we hit this speed, we will not go any faster.
  • JUMP_SPEED: How high we can jump.
  • ACCEL: How quickly we accelerate. The higher the value, the sooner we get to max speed.
  • DEACCEL: How quickly we are going to decelerate. The higher the value, the sooner we will come to a complete stop.
  • MAX_SLOPE_ANGLE: The steepest angle our KinematicBody will consider as a “floor”.
  • camera: The Camera node.
  • rotation_helper: A Spatial node holding everything we want to rotate on the X axis (up and down).
  • MOUSE_SENSITIVITY: How sensitive the mouse is. I find a value of 0.05 works well for my mouse, but you may need to change it based on how sensitive your mouse is.

You can tweak many of these variables to get different results. For example, by lowering GRAVITY and/or increasing JUMP_SPEED you can get a more “floaty” feeling character. Feel free to experiment!

Nota

You may have noticed that MOUSE_SENSITIVITY is written in all caps like the other constants, but MOUSE_SENSITIVITY is not a constant.

The reason behind this is we want to treat it like a constant variable (a variable that cannot change) throughout our script, but we want to be able to change the value later when we add customizable settings. So, in an effort to remind ourselves to treat it like a constant, it’s named in all caps.


Now let’s look at the _ready function:

First we get the camera and rotation_helper nodes and store them into their variables.

Then we need to set the mouse mode to captured, so the mouse cannot leave the game window.

This will hide the mouse and keep it at the center of the screen. We do this for two reasons: The first reason being we do not want the player to see their mouse cursor as they play.

The second reason is because we do not want the cursor to leave the game window. If the cursor leaves the game window there could be instances where the player clicks outside the window, and then the game would lose focus. To assure neither of these issues happens, we capture the mouse cursor.

Nota

See Input documentation for the various mouse modes. We will only be using MOUSE_MODE_CAPTURED and MOUSE_MODE_VISIBLE in this tutorial series.


Next let’s take a look at _physics_process:

All we’re doing in _physics_process is calling two functions: process_input and process_movement.

process_input will be where we store all the code relating to player input. We want to call it first, before anything else, so we have fresh player input to work with.

process_movement is where we’ll send all the data necessary to the KinematicBody so it can move through the game world.


Let’s look at process_input next:

Primero ponemos dir a un Vector3.

dir will be used for storing the direction the player intends to move towards. Because we do not want the player’s previous input to effect the player beyond a single process_movement call, we reset dir.

Next we get the camera’s global transform and store it as well, into the cam_xform variable.

The reason we need the camera’s global transform is so we can use its directional vectors. Many have found directional vectors confusing, so let’s take a second to explain how they work:


World space can be defined as: The space in which all objects are placed in, relative to a constant origin point. Every object, no matter if it is 2D or 3D, has a position in world space.

To put it another way: world space is the space in a universe where every object’s position, rotation, and scale can be measured by a single, known, fixed point called the origin.

In Godot, the origin is at position (0, 0, 0) with a rotation of (0, 0, 0) and a scale of (1, 1, 1).

Nota

When you open up the Godot editor and select a Spatial based node, a gizmo pops up. Each of the arrows points using world space directions by default.

If you want to move using the world space directional vectors, you’d do something like this:

if Input.is_action_pressed("movement_forward"):
    node.translate(Vector3(0, 0, 1))
if Input.is_action_pressed("movement_backward"):
    node.translate(Vector3(0, 0, -1))
if Input.is_action_pressed("movement_left"):
    node.translate(Vector3(1, 0, 0))
if Input.is_action_pressed("movement_right"):
    node.translate(Vector3(-1, 0, 0))
if (Input.IsActionPressed("movement_forward"))
    node.Translate(new Vector3(0, 0, 1));
if (Input.IsActionPressed("movement_backward"))
    node.Translate(new Vector3(0, 0, -1));
if (Input.IsActionPressed("movement_left"))
    node.Translate(new Vector3(1, 0, 0));
if (Input.IsActionPressed("movement_right"))
    node.Translate(new Vector3(-1, 0, 0));

Nota

Notice how we do not need to do any calculations to get world space directional vectors. We can define a few Vector3 variables and input the values pointing in each direction.

Here is what world space looks like in 2D:

Nota

The following images are just examples. Each arrow/rectangle represents a directional vector

../../../_images/WorldSpaceExample.png

And here is what it looks like for 3D:

../../../_images/WorldSpaceExample_3D.png

Notice how in both examples, the rotation of the node does not change the directional arrows. This is because world space is a constant. No matter how you translate, rotate, or scale an object, world space will always point in the same direction.

Local space is different, because it takes the rotation of the object into account.

Local space can be defined as follows: The space in which an object’s position is the origin of the universe. Because the position of the origin can be at N many locations, the values derived from local space change with the position of the origin.

Nota

This stack overflow question has a much better explanation of world space and local space.

https://gamedev.stackexchange.com/questions/65783/what-are-world-space-and-eye-space-in-game-development (Local space and eye space are essentially the same thing in this context)

To get a Spatial node’s local space, we need to get its Transform, so then we can get the Basis from the Transform.

Each Basis has three vectors: X, Y, and Z. Each of those vectors point towards each of the local space vectors coming from that object.

To use the Spatial node’s local directional vectors, we use this code:

if Input.is_action_pressed("movement_forward"):
    node.translate(node.global_transform.basis.z.normalized())
if Input.is_action_pressed("movement_backward"):
    node.translate(-node.global_transform.basis.z.normalized())
if Input.is_action_pressed("movement_left"):
    node.translate(node.global_transform.basis.x.normalized())
if Input.is_action_pressed("movement_right"):
    node.translate(-node.global_transform.basis.x.normalized())
if (Input.IsActionPressed("movement_forward"))
    node.Translate(node.GlobalTransform.basis.z.Normalized());
if (Input.IsActionPressed("movement_backward"))
    node.Translate(-node.GlobalTransform.basis.z.Normalized());
if (Input.IsActionPressed("movement_left"))
    node.Translate(node.GlobalTransform.basis.x.Normalized());
if (Input.IsActionPressed("movement_right"))
    node.Translate(-node.GlobalTransform.basis.x.Normalized());

Here is what local space looks like in 2D:

../../../_images/LocalSpaceExample.png

And here is what it looks like for 3D:

../../../_images/LocalSpaceExample_3D.png

Here is what the Spatial gizmo shows when you are using local space mode. Notice how the arrows follow the rotation of the object on the left, which looks exactly the same as the 3D example for local space.

Nota

You can change between local and world space modes by pressing T or the little cube button when you have a Spatial based node selected.

../../../_images/LocalSpaceExampleGizmo.png

Local vectors are confusing even for more experienced game developers, so do not worry if this all doesn’t make a lot of sense. The key thing to remember about local vectors is that we are using local coordinates to get direction from the object’s point of view, as opposed to using world vectors, which give direction from the world’s point of view.


Okay, back to process_input:

Next we make a new variable called input_movement_vector and assign it to an empty Vector2. We will use this to make a virtual axis of sorts, to map the player’s input to movement.

Nota

This may seem overkill for just the keyboard, but this will make sense later when we add joypad input.

Based on which directional movement action is pressed, we add to or subtract from input_movement_vector.

After we’ve checked each of the directional movement actions, we normalize input_movement_vector. This makes it where input_movement_vector’s values are within a 1 radius unit circle.

Next we add the camera’s local Z vector times input_movement_vector.y to dir. This is so when the player presses forward or backwards, we add the camera’s local Z axis so the player moves forward or backwards in relation to the camera.

Nota

Because the camera is rotated by -180 degrees, we have to flip the Z directional vector. Normally forward would be the positive Z axis, so using basis.z.normalized() would work, but we are using -basis.z.normalized() because our camera’s Z axis faces backwards in relation to the rest of the player.

We do the same thing for the camera’s local X vector, and instead of using input_movement_vector.y we instead use input_movement_vector.x. This makes it where the player moves left/right in relation to the camera when the player presses left/right.

Next we check if the player is on the floor using KinematicBody’s is_on_floor function. If it is, then we check to see if the «movement_jump» action has just been pressed. If it has, then we set the player’s Y velocity to JUMP_SPEED.

Because we’re setting the Y velocity, the player will jump into the air.

Then we check for the ui_cancel action. This is so we can free/capture the mouse cursor when the escape button is pressed. We do this because otherwise we’d have no way to free the cursor, meaning it would be stuck until you terminate the runtime.

To free/capture the cursor, we check to see if the mouse is visible (freed) or not. If it is, we capture it, and if it’s not, we make it visible (free it).

That’s all we’re doing right now for process_input. We’ll come back several times to this function as we add more complexities to our player.


Now let’s look at process_movement:

First we ensure that dir does not have any movement on the Y axis by setting its Y value to zero.

Next we normalize dir to ensure we’re within a 1 radius unit circle. This makes it where we’re moving at a constant speed regardless of whether the player is moving straight or diagonally. If we did not normalize, the player would move faster on the diagonal than when going straight.

Next we add gravity to the player by adding GRAVITY * delta to the player’s Y velocity.

After that we assign the player’s velocity to a new variable (called hvel) and remove any movement on the Y axis.

Next we set a new variable (target) to the player’s direction vector. Then we multiply that by the player’s max speed so we know how far the player will move in the direction provided by dir.

After that we make a new variable for acceleration, named accel.

We then take the dot product of hvel to see if the player is moving according to hvel. Remember, hvel does not have any Y velocity, meaning we are only checking if the player is moving forwards, backwards, left, or right.

If the player is moving according to hvel, then we set accel to the ACCEL constant so the player will accelerate, otherwise we set accel to our DEACCEL constant so the player will decelerate.

Then we interpolate the horizontal velocity, set the player’s X and Z velocity to the interpolated horizontal velocity, and call move_and_slide to let the KinematicBody handle moving the player through the physics world.

Truco

¡Todo el código en process_movement es exactamente igual que el código de movimiento de la demo de Personaje Cinemático!


The final function we have is the _input function, and thankfully it’s fairly short:

First we make sure that the event we are dealing with is an InputEventMouseMotion event. We also want to check if the cursor is captured, as we do not want to rotate if it is not.

Nota

See Mouse and input coordinates for a list of possible input events.

If the event is indeed a mouse motion event and the cursor is captured, we rotate based on the relative mouse motion provided by InputEventMouseMotion.

First we rotate the rotation_helper node on the X axis, using the relative mouse motion’s Y value, provided by InputEventMouseMotion.

Then we rotate the entire KinematicBody on the Y axis by the relative mouse motion’s X value.

Truco

Godot converts relative mouse motion into a Vector2 where mouse movement going up and down is 1 and -1 respectively. Right and Left movement is 1 and -1 respectively.

Because of how we are rotating the player, we multiply the relative mouse motion’s X value by -1 so mouse motion going left and right rotates the player left and right in the same direction.

Finally, we clamp the rotation_helper’s X rotation to be between -70 and 70 degrees so the player cannot rotate themselves upside down.

Truco

See using transforms for more information on rotating transforms.


To test the code, open up the scene named Testing_Area.tscn, if it’s not already opened up. We will be using this scene as we go through the next few tutorial parts, so be sure to keep it open in one of your scene tabs.

Go ahead and test your code either by pressing F6 with Testing_Area.tscn as the open tab, by pressing the play button in the top right corner, or by pressing F5. You should now be able to walk around, jump in the air, and look around using the mouse.

Giving the player a flash light and the option to sprint

Before we get to making the weapons work, there are a couple more things we should add.

Many FPS games have an option to sprint and a flashlight. We can easily add these to our player, so let’s do that!

First we need a few more class variables in our player script:

const MAX_SPRINT_SPEED = 30
const SPRINT_ACCEL = 18
var is_sprinting = false

var flashlight
[Export]
public float MaxSprintSpeed = 30.0f;
[Export]
public float SprintAccel = 18.0f;
private bool _isSprinting = false;

private SpotLight _flashlight;

All the sprinting variables work exactly the same as the non sprinting variables with similar names.

is_sprinting is a boolean to track whether the player is currently sprinting, and flashlight is a variable we will be using to hold the player’s flash light node.

Now we need to add a few lines of code, starting in _ready. Add the following to _ready:

flashlight = $Rotation_Helper/Flashlight
_flashlight = GetNode<SpotLight>("Rotation_Helper/Flashlight");

Esto obtiene el nodo Flashlight (linterna) y lo asigna a la variable flashlight.


Now we need to change some of the code in process_input. Add the following somewhere in process_input:

# ----------------------------------
# Sprinting
if Input.is_action_pressed("movement_sprint"):
    is_sprinting = true
else:
    is_sprinting = false
# ----------------------------------

# ----------------------------------
# Turning the flashlight on/off
if Input.is_action_just_pressed("flashlight"):
    if flashlight.is_visible_in_tree():
        flashlight.hide()
    else:
        flashlight.show()
# ----------------------------------
//  -------------------------------------------------------------------
//  Sprinting
if (Input.IsActionPressed("movement_sprint"))
    _isSprinting = true;
else
    _isSprinting = false;
//  -------------------------------------------------------------------

//  -------------------------------------------------------------------
//  Turning the flashlight on/off
if (Input.IsActionJustPressed("flashlight"))
{
    if (_flashlight.IsVisibleInTree())
        _flashlight.Hide();
    else
        _flashlight.Show();
}

Let’s go over the additions:

We set is_sprinting to true when the player is holding down the movement_sprint action, and false when the movement_sprint action is released. In process_movement we’ll add the code that makes the player faster when they sprint. Here in process_input we are just going to change the is_sprinting variable.

We do something similar to freeing/capturing the cursor for handling the flashlight. We first check to see if the flashlight action was just pressed. If it was, we then check to see if flashlight is visible in the scene tree. If it is, then we hide it, and if it’s not, we show it.


Now we need to change a couple things in process_movement. First, replace target *= MAX_SPEED with the following:

if is_sprinting:
    target *= MAX_SPRINT_SPEED
else:
    target *= MAX_SPEED
if (_isSprinting)
    target *= MaxSprintSpeed;
else
    target *= MaxSpeed;

Now instead of always multiplying target by MAX_SPEED, we first check to see if the player is sprinting or not. If the player is sprinting, we instead multiply target by MAX_SPRINT_SPEED.

Now all that’s left is to change the acceleration when sprinting. Change accel = ACCEL to the following:

if is_sprinting:
    accel = SPRINT_ACCEL
else:
    accel = ACCEL
if (_isSprinting)
    accel = SprintAccel;
else
    accel = Accel;

Now, when the player is sprinting, we’ll use SPRINT_ACCEL instead of ACCEL, which will accelerate the player faster.


You should now be able to sprint if you press the shift button, and can toggle the flash light on and off by pressing the F button!

Go try it out! You can change the sprint-related class variables to make the player faster or slower when sprinting!

Notas finales

../../../_images/PartOneFinished.png

Whew! That was a lot of work. Now you have a fully working first person character!

In Part 2 we will add some guns to our player character.

Nota

¡En este punto hemos recreado la demo del Personaje Cinemático desde una perspectiva en primera persona con sprint y una luz de flash!

Truco

Currently the player script would be at an ideal state for making all sorts of first person games. For example: Horror games, platformer games, adventure games, and more!

Advertencia

If you ever get lost, be sure to read over the code again!

You can download the finished project for this part here: Godot_FPS_Part_1.zip