Matemáticas vectoriales¶
Introducción¶
Este tutorial es una breve y práctica introducción al álgebra lineal aplicada al desarrollo de juegos. El álgebra lineal es el estudio de los vectores y sus usos. Los vectores tienen muchas aplicaciones tanto en el desarrollo 2D como 3D y Godot los utiliza ampliamente. Desarrollar una buena comprensión de las matemáticas vectoriales es esencial para convertirse en un desarrollador de juegos sólido.
Nota
Este tutorial no es un libro de texto formal sobre álgebra lineal. Sólo veremos cómo se aplica al desarrollo de juegos. Para una visión más amplia de las matemáticas, consulta https://es.khanacademy.org/math/linear-algebra
Sistemas de coordenadas (2D)¶
En el espacio 2D, las coordenadas se definen usando un eje horizontal (x
) y un eje vertical (y
). Una posición concreta en un espacio 2D se escribe como un par de valores como (4, 3)
.

Nota
Si eres nuevo en el mundo de los gráficos por computadora, puede parecer extraño que el eje positivo y
apunte hacia abajo en lugar de hacia arriba, como probablemente aprendiste en la clase de matemáticas. Sin embargo, esto es común en la mayoría de las aplicaciones de gráficos por computadora.
Cualquier posición en el plano 2D puede ser identificada por un par de números de esta manera. Sin embargo, también podemos pensar en la posición (4, 3)
como una compensación del punto (0, 0)
, u origen. Dibuja una flecha apuntando desde el origen hasta el punto:

Esto es un vector. Un vector representa mucha información útil. Además de decirnos que el punto está en (4, 3)
, también podemos pensar en él como un ángulo θ
y una longitud (o magnitud) m
. En este caso, la flecha es un vector de posición - denota una posición en el espacio, relativa al origen.
Un punto muy importante a considerar acerca de los vectores es que ellos sólo representan dirección y magnitud relativa. No hay concepto de posición en un vector. Los siguientes dos vectores son idénticos:

Ambos vectores representan un punto 4 unidades a la derecha y 3 unidades por debajo de algún punto de partida. No importa donde dibujes el vector en el plano, siempre representa una dirección y magnitud relativa.
Operaciones vectoriales¶
Se puede utilizar cualquiera de los dos métodos (coordenadas x e y o ángulo y magnitud) para referirse a un vector, pero por conveniencia los programadores típicamente usan la notación de coordenadas. Por ejemplo, en Godot el origen es la esquina superior izquierda de la pantalla, así que para colocar un nodo 2D llamado Node2D
400 píxeles a la derecha y 300 píxeles hacia abajo, usa el siguiente código:
$Node2D.position = Vector2(400, 300)
var node2D = GetNode<Node2D>("Node2D");
node2D.Position = new Vector2(400, 300);
Godot soporta tanto Vector2 como ref:`Vector3 <class_Vector3> para uso 2D y 3D respectivamente. Las mismas reglas matemáticas discutidas en este artículo se aplican a ambos tipos.
Acceso para miembros¶
Se puede acceder directamente a los componentes individuales del vector por nombre.
# create a vector with coordinates (2, 5)
var a = Vector2(2, 5)
# create a vector and assign x and y manually
var b = Vector2()
b.x = 3
b.y = 1
// create a vector with coordinates (2, 5)
var a = new Vector2(2, 5);
// create a vector and assign x and y manually
var b = new Vector2();
b.x = 3;
b.y = 1;
Añadir vectores¶
Al sumar o restar dos vectores, se suman los componentes correspondientes:
var c = a + b # (2, 5) + (3, 1) = (5, 6)
var c = a + b; // (2, 5) + (3, 1) = (5, 6)
También podemos ver esto visualmente añadiendo el segundo vector al final del primero:

Nota que sumar a + b
da el mismo resultado que b + a
.
Multiplicación escalar¶
Nota
Los vectores representan tanto la dirección como la magnitud. Un valor que representa sólo la magnitud se llama escalar.
Un vector puede ser multiplicado por un escalar:
var c = a * 2 # (2, 5) * 2 = (4, 10)
var d = b / 3 # (3, 6) / 3 = (1, 2)
var c = a * 2; // (2, 5) * 2 = (4, 10)
var d = b / 3; // (3, 6) / 3 = (1, 2)

Nota
Multiplicar un vector por un escalar no cambia su dirección, sólo su magnitud. Así es como escala un vector.
Aplicaciones prácticas¶
Veamos dos usos comunes para sumar y restar vectores.
Movimiento¶
Un vector puede representar cualquier cantidad con una magnitud y dirección. Los ejemplos típicos son: posición, velocidad, aceleración y fuerza. En esta imagen, la nave espacial en el paso 1 tiene un vector de posición de (1,3)
y un vector de velocidad de (2,1)
. El vector de velocidad representa hasta dónde se mueve la nave en cada paso. Podemos encontrar la posición para el paso 2 sumando la velocidad a la posición actual.

Truco
La velocidad mide el cambio de posición por unidad de tiempo. La nueva posición se encuentra añadiendo velocidad a la posición anterior.
Apuntar hacia un objetivo¶
En este escenario, hay un tanque que desea apuntar con su torreta a un robot. Si se resta la posición del tanque de la posición del robot, el vector apunta desde el tanque al robot.

Truco
Para encontrar un vector que apunte de A
a B
se utiliza B - A
.
Vectores unitarios¶
Un vector con magnitud de 1
se llama vector unitario. También se les conoce como vectores de dirección o normales. Los vectores unitarios son útiles cuando se necesita llevar un registro de una dirección.
Normalización¶
Normalizar un vector significa reducir su longitud a 1
preservando su dirección. Esto se hace dividiendo cada uno de sus componentes por su magnitud. Como esta es una operación común, Vector2
y Vector3
proveen un método para normalizar:
a = a.normalized()
a = a.Normalized();
Advertencia
Debido a que la normalización implica dividir por la longitud del vector, no se puede normalizar un vector de longitud 0
. Si lo intentas, se producirá un error.
Reflexión¶
Un uso común de los vectores unitarios es indicar normales. Los vectores normales son vectores unitarios alineados perpendicularmente a una superficie, definiendo su dirección. Se utilizan comúnmente para iluminación, colisiones y otras operaciones que involucran superficies.
Por ejemplo, imagina que tenemos una pelota en movimiento que queremos rebotar en una pared u otro objeto:

La superficie normal tiene un valor de (0, -1)
porque es una superficie horizontal. Cuando la pelota choca, tomamos el movimiento que le queda (la cantidad que queda cuando golpea la superficie) y lo reflejamos usando el normal. En Godot, la clase Vector2 tiene un método bounce()
para manejar esto. Aquí hay un ejemplo de GDScript del diagrama anterior usando un KinematicBody2D:
# object "collision" contains information about the collision
var collision = move_and_collide(velocity * delta)
if collision:
var reflect = collision.remainder.bounce(collision.normal)
velocity = velocity.bounce(collision.normal)
move_and_collide(reflect)
// KinematicCollision2D contains information about the collision
KinematicCollision2D collision = MoveAndCollide(_velocity * delta);
if (collision != null)
{
var reflect = collision.Remainder.Bounce(collision.Normal);
_velocity = _velocity.Bounce(collision.Normal);
MoveAndCollide(reflect);
}
Producto punto¶
El producto punto es uno de los conceptos más importantes en la matemática vectorial, pero a menudo es malentendido. El producto punto es una operación en dos vectores que devuelve un escalar. A diferencia de un vector, que contiene tanto la magnitud como la dirección, un valor escalar sólo tiene magnitud.
La fórmula para el producto punto toma dos formas comunes:

y

Sin embargo, en la mayoría de los casos es más fácil utilizar el método incorporado. Nótese que el orden de los dos vectores no importa:
var c = a.dot(b)
var d = b.dot(a) # These are equivalent.
float c = a.Dot(b);
float d = b.Dot(a); // These are equivalent.
El producto punto es más útil cuando se usa con vectores unitarios, haciendo que la primera fórmula se reduzca a cosθ
. Esto significa que podemos usar el producto punto para indicarnos algo sobre el ángulo entre dos vectores:

Cuando se utilizan vectores unitarios, el resultado estará siempre entre -1
(180°) y 1
(0°).
Orientación¶
Podemos usar este hecho para detectar si un objeto está orientado hacia otro objeto. En el diagrama de abajo, el jugador P
está tratando de evitar a los zombis A
y B
. Asumiendo que el campo de visión de un zombi es 180°, ¿pueden ver al jugador?

Las flechas verdes fA
y fB
son vectores unitarios que representan las direcciones que apuntan los zombis y el semicírculo azul representa su campo de visión. Para zombie A
, encontramos el vector de dirección AP
apuntando al jugador usando P - A
y lo normalizamos; Godot tiene una función auxiliar para hacer esto, llamada direction_to
. Si el ángulo entre este vector y el vector opuesto es inferior a 90°, el zombi podrá ver al jugador.
En código se vería así:
var AP = A.direction_to(P)
if AP.dot(fA) > 0:
print("A sees P!")
var AP = A.DirectionTo(P);
if (AP.Dot(fA) > 0)
{
GD.Print("A sees P!");
}
Producto vectorial¶
Al igual que el producto punto, el producto vectorial (o producto cruz) es una operación sobre dos vectores. Sin embargo, el resultado del producto vectorial es un vector con una dirección que es perpendicular a ambos. Su magnitud depende de su ángulo relativo. Si dos vectores son paralelos, el resultado de su producto cruz será nulo.


El producto vectorial se calcula así:
var c = Vector3()
c.x = (a.y * b.z) - (a.z * b.y)
c.y = (a.z * b.x) - (a.x * b.z)
c.z = (a.x * b.y) - (a.y * b.x)
var c = new Vector3();
c.x = (a.y * b.z) - (a.z * b.y);
c.y = (a.z * b.x) - (a.x * b.z);
c.z = (a.x * b.y) - (a.y * b.x);
En Godot, puedes usar el método integrado:
var c = a.cross(b)
var c = a.Cross(b);
Nota
En el producto vectorial, el orden importa. a.cross(b)
no da el mismo resultado que b.cross(a)
. Los vectores resultantes apuntan en direcciones opuestas.
Calculando normales¶
Un uso común de los productos vectorial es encontrar una superficie normal de un plano o superficie en el espacio 3D. Si tenemos el triángulo ABC
podemos usar sustracción vectorial para encontrar dos bordes AB
y AC
. Utilizando el producto vectorial, AB x AC
produce un vector perpendicular a ambos: la superficie normal.
A continuación se muestra una función para calcular el normal en un triángulo:
func get_triangle_normal(a, b, c):
# find the surface normal given 3 vertices
var side1 = b - a
var side2 = c - a
var normal = side1.cross(side2)
return normal
Vector3 GetTriangleNormal(Vector3 a, Vector3 b, Vector3 c)
{
// find the surface normal given 3 vertices
var side1 = b - a;
var side2 = c - a;
var normal = side1.Cross(side2);
return normal;
}
Apuntando a un objetivo¶
En la sección de producto punto anterior, vimos cómo se podía usar para encontrar el ángulo entre dos vectores. Sin embargo, en 3D esto no es suficiente información. También necesitamos saber qué eje girar. A esto podemos encontrarlo calculando el producto vectorial de la dirección de orientación actual y la dirección objetivo. El vector perpendicular resultante es el eje de rotación.
Más información¶
Para más información sobre el uso de la matemática vectorial en Godot, consulta los siguientes artículos: