Up to date

This page is up to date for Godot 4.0. If you still find outdated information, please open an issue.

Vector3

A 3D vector using floating point coordinates.

Description

A 3-element structure that can be used to represent 3D coordinates or any other triplet of numeric values.

It uses floating-point coordinates. By default, these floating-point values use 32-bit precision, unlike float which is always 64-bit. If double precision is needed, compile the engine with the option precision=double.

See Vector3i for its integer counterpart.

Note: In a boolean context, a Vector3 will evaluate to false if it's equal to Vector3(0, 0, 0). Otherwise, a Vector3 will always evaluate to true.

Tutorials

Properties

float

x

0.0

float

y

0.0

float

z

0.0

Constructors

Vector3

Vector3 ( )

Vector3

Vector3 ( Vector3 from )

Vector3

Vector3 ( Vector3i from )

Vector3

Vector3 ( float x, float y, float z )

Methods

Vector3

abs ( ) const

float

angle_to ( Vector3 to ) const

Vector3

bezier_derivative ( Vector3 control_1, Vector3 control_2, Vector3 end, float t ) const

Vector3

bezier_interpolate ( Vector3 control_1, Vector3 control_2, Vector3 end, float t ) const

Vector3

bounce ( Vector3 n ) const

Vector3

ceil ( ) const

Vector3

clamp ( Vector3 min, Vector3 max ) const

Vector3

cross ( Vector3 with ) const

Vector3

cubic_interpolate ( Vector3 b, Vector3 pre_a, Vector3 post_b, float weight ) const

Vector3

cubic_interpolate_in_time ( Vector3 b, Vector3 pre_a, Vector3 post_b, float weight, float b_t, float pre_a_t, float post_b_t ) const

Vector3

direction_to ( Vector3 to ) const

float

distance_squared_to ( Vector3 to ) const

float

distance_to ( Vector3 to ) const

float

dot ( Vector3 with ) const

Vector3

floor ( ) const

Vector3

inverse ( ) const

bool

is_equal_approx ( Vector3 to ) const

bool

is_finite ( ) const

bool

is_normalized ( ) const

bool

is_zero_approx ( ) const

float

length ( ) const

float

length_squared ( ) const

Vector3

lerp ( Vector3 to, float weight ) const

Vector3

limit_length ( float length=1.0 ) const

int

max_axis_index ( ) const

int

min_axis_index ( ) const

Vector3

move_toward ( Vector3 to, float delta ) const

Vector3

normalized ( ) const

Vector3

octahedron_decode ( Vector2 uv ) static

Vector2

octahedron_encode ( ) const

Basis

outer ( Vector3 with ) const

Vector3

posmod ( float mod ) const

Vector3

posmodv ( Vector3 modv ) const

Vector3

project ( Vector3 b ) const

Vector3

reflect ( Vector3 n ) const

Vector3

rotated ( Vector3 axis, float angle ) const

Vector3

round ( ) const

Vector3

sign ( ) const

float

signed_angle_to ( Vector3 to, Vector3 axis ) const

Vector3

slerp ( Vector3 to, float weight ) const

Vector3

slide ( Vector3 n ) const

Vector3

snapped ( Vector3 step ) const

Operators

bool

operator != ( Vector3 right )

Vector3

operator * ( Basis right )

Vector3

operator * ( Quaternion right )

Vector3

operator * ( Transform3D right )

Vector3

operator * ( Vector3 right )

Vector3

operator * ( float right )

Vector3

operator * ( int right )

Vector3

operator + ( Vector3 right )

Vector3

operator - ( Vector3 right )

Vector3

operator / ( Vector3 right )

Vector3

operator / ( float right )

Vector3

operator / ( int right )

bool

operator < ( Vector3 right )

bool

operator <= ( Vector3 right )

bool

operator == ( Vector3 right )

bool

operator > ( Vector3 right )

bool

operator >= ( Vector3 right )

float

operator [] ( int index )

Vector3

operator unary+ ( )

Vector3

operator unary- ( )


Constants

AXIS_X = 0

Enumerated value for the X axis. Returned by max_axis_index and min_axis_index.

AXIS_Y = 1

Enumerated value for the Y axis. Returned by max_axis_index and min_axis_index.

AXIS_Z = 2

Enumerated value for the Z axis. Returned by max_axis_index and min_axis_index.

ZERO = Vector3(0, 0, 0)

Zero vector, a vector with all components set to 0.

ONE = Vector3(1, 1, 1)

One vector, a vector with all components set to 1.

INF = Vector3(inf, inf, inf)

Infinity vector, a vector with all components set to @GDScript.INF.

LEFT = Vector3(-1, 0, 0)

Left unit vector. Represents the local direction of left, and the global direction of west.

RIGHT = Vector3(1, 0, 0)

Right unit vector. Represents the local direction of right, and the global direction of east.

UP = Vector3(0, 1, 0)

Up unit vector.

DOWN = Vector3(0, -1, 0)

Down unit vector.

FORWARD = Vector3(0, 0, -1)

Forward unit vector. Represents the local direction of forward, and the global direction of north.

BACK = Vector3(0, 0, 1)

Back unit vector. Represents the local direction of back, and the global direction of south.


Property Descriptions

float x = 0.0

The vector's X component. Also accessible by using the index position [0].


float y = 0.0

The vector's Y component. Also accessible by using the index position [1].


float z = 0.0

The vector's Z component. Also accessible by using the index position [2].


Constructor Descriptions

Vector3 Vector3 ( )

Constructs a default-initialized Vector3 with all components set to 0.


Vector3 Vector3 ( Vector3 from )

Constructs a Vector3 as a copy of the given Vector3.


Vector3 Vector3 ( Vector3i from )

Constructs a new Vector3 from Vector3i.


Vector3 Vector3 ( float x, float y, float z )

Returns a Vector3 with the given components.


Method Descriptions

Vector3 abs ( ) const

Returns a new vector with all components in absolute values (i.e. positive).


float angle_to ( Vector3 to ) const

Returns the unsigned minimum angle to the given vector, in radians.


Vector3 bezier_derivative ( Vector3 control_1, Vector3 control_2, Vector3 end, float t ) const

Returns the derivative at the given t on the Bézier curve defined by this vector and the given control_1, control_2, and end points.


Vector3 bezier_interpolate ( Vector3 control_1, Vector3 control_2, Vector3 end, float t ) const

Returns the point at the given t on the Bézier curve defined by this vector and the given control_1, control_2, and end points.


Vector3 bounce ( Vector3 n ) const

Returns the vector "bounced off" from a plane defined by the given normal.


Vector3 ceil ( ) const

Returns a new vector with all components rounded up (towards positive infinity).


Vector3 clamp ( Vector3 min, Vector3 max ) const

Returns a new vector with all components clamped between the components of min and max, by running @GlobalScope.clamp on each component.


Vector3 cross ( Vector3 with ) const

Returns the cross product of this vector and with.


Vector3 cubic_interpolate ( Vector3 b, Vector3 pre_a, Vector3 post_b, float weight ) const

Performs a cubic interpolation between this vector and b using pre_a and post_b as handles, and returns the result at position weight. weight is on the range of 0.0 to 1.0, representing the amount of interpolation.


Vector3 cubic_interpolate_in_time ( Vector3 b, Vector3 pre_a, Vector3 post_b, float weight, float b_t, float pre_a_t, float post_b_t ) const

Performs a cubic interpolation between this vector and b using pre_a and post_b as handles, and returns the result at position weight. weight is on the range of 0.0 to 1.0, representing the amount of interpolation.

It can perform smoother interpolation than cubic_interpolate() by the time values.


Vector3 direction_to ( Vector3 to ) const

Returns the normalized vector pointing from this vector to to. This is equivalent to using (b - a).normalized().


float distance_squared_to ( Vector3 to ) const

Returns the squared distance between this vector and to.

This method runs faster than distance_to, so prefer it if you need to compare vectors or need the squared distance for some formula.


float distance_to ( Vector3 to ) const

Returns the distance between this vector and to.


float dot ( Vector3 with ) const

Returns the dot product of this vector and with. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.

The dot product will be 0 for a straight angle (90 degrees), greater than 0