Up to date

This page is up to date for Godot 4.1. If you still find outdated information, please open an issue.

List of features

This page aims to list all features currently supported by Godot.


This page lists features supported by the current stable version of Godot (4.0). Some of these features may not be available in the LTS release series (3.x).


Can run both the editor and exported projects:

  • Windows 7 and later (64-bit and 32-bit).

  • macOS 10.12 and later (64-bit, x86 and ARM).

  • Linux (64-bit, x86 and ARM).

    • Binaries are statically linked and can run on any distribution if compiled on an old enough base distribution.

    • Official binaries are compiled on Ubuntu 14.04.

    • 32-bit binaries can be compiled from source.

  • Android 6.0 and later (editor support is experimental).

  • Web browsers. Experimental in 4.0, using Godot 3.x is recommended instead when targeting HTML5.

Runs exported projects:

Godot aims to be as platform-independent as possible and can be ported to new platforms with relative ease.



  • Scene tree editor.

  • Built-in script editor.

  • Support for external script editors such as Visual Studio Code or Vim.

  • GDScript debugger.

    • No support for debugging in threads yet.

  • Visual profiler with CPU and GPU time indications for each step of the rendering pipeline.

  • Performance monitoring tools, including custom performance monitors.

  • Live script reloading.

  • Live scene editing.

    • Changes will reflect in the editor and will be kept after closing the running project.

  • Remote inspector.

    • Changes won't reflect in the editor and won't be kept after closing the running project.

  • Live camera replication.

    • Move the in-editor camera and see the result in the running project.

  • Built-in offline class reference documentation.

  • Use the editor in dozens of languages contributed by the community.



3 rendering methods (running over 2 rendering drivers) are available:

  • Forward+, running over Vulkan 1.0 (with optional Vulkan 1.1 and 1.2 features). The most advanced graphics backend, suited for desktop platforms only. Used by default on desktop platforms.

  • Forward Mobile, running over Vulkan 1.0 (with optional Vulkan 1.1 and 1.2 features). Less features, but renders simple scenes faster. Suited for mobile and desktop platforms. Used by default on mobile platforms.

  • Compatibility, running over OpenGL 3.3 / OpenGL ES 3.0 / WebGL 2.0. The least advanced graphics backend, suited for low-end desktop and mobile platforms. Used by default on the web platform.

2D graphics

  • Sprite, polygon and line rendering.

    • High-level tools to draw lines and polygons such as Polygon2D and Line2D, with support for texturing.

  • AnimatedSprite2D as a helper for creating animated sprites.

  • Parallax layers.

    • Pseudo-3D support including preview in the editor.

  • 2D lighting with normal maps and specular maps.

    • Point (omni/spot) and directional 2D lights.

    • Hard or soft shadows (adjustable on a per-light basis).

    • Custom shaders can access a real-time SDF representation of the 2D scene based on LightOccluder2D nodes, which can be used for improved 2D lighting effects including 2D global illumination.

  • Font rendering using bitmaps, rasterization using FreeType or multi-channel signed distance fields (MSDF).

    • Bitmap fonts can be exported using tools like BMFont, or imported from images (for fixed-width fonts only).

    • Dynamic fonts support monochrome fonts as well as colored fonts (e.g. for emoji). Supported formats are TTF, OTF, WOFF1 and WOFF2.

    • Dynamic fonts support optional font outlines with adjustable width and color.

    • Dynamic fonts support variable fonts and OpenType features including ligatures.

    • Dynamic fonts support simulated bold and italic when the font file lacks those styles.

    • Dynamic fonts support oversampling to keep fonts sharp at higher resolutions.

    • Dynamic fonts support subpixel positioning to make fonts crisper at low sizes.

    • Dynamic fonts support LCD subpixel optimizations to make fonts even crisper at low sizes.

    • Signed distance field fonts can be scaled at any resolution without requiring re-rasterization. Multi-channel usage makes SDF fonts scale down to lower sizes better compared to monochrome SDF fonts.

  • GPU-based particles with support for custom particle shaders.

  • CPU-based particles.

2D tools

  • TileMaps for 2D tile-based level design.

  • 2D camera with built-in smoothing and drag margins.

  • Path2D node to represent a path in 2D space.

    • Can be drawn in the editor or generated procedurally.

    • PathFollow2D node to make nodes follow a Path2D.

  • 2D geometry helper class.

2D physics

Physics bodies:

  • Static bodies.

  • Animatable bodies (for objects moving only by script or animation, such as doors and platforms).

  • Rigid bodies.

  • Character bodies.

  • Joints.

  • Areas to detect bodies entering or leaving it.

Collision detection:

  • Built-in shapes: line, box, circle, capsule, world boundary (infinite plane).

  • Collision polygons (can be drawn manually or generated from a sprite in the editor).

3D graphics

  • HDR rendering with sRGB.

  • Perspective, orthographic and frustum-offset cameras.

  • When using the Forward+ backend, a depth prepass is used to improve performance in complex scenes by reducing the cost of overdraw.

  • Variable rate shading on supported GPUs in Forward+ and Forward Mobile.

Physically-based rendering (built-in material features):

  • Follows the Disney PBR model.

  • Supports Burley, Lambert, Lambert Wrap (half-Lambert) and Toon diffuse shading modes.

  • Supports Schlick-GGX, Toon and Disabled specular shading modes.

  • Uses a roughness-metallic workflow with support for ORM textures.

  • Uses horizon specular occlusion (Filament model) to improve material appearance.

  • Normal mapping.

  • Parallax/relief mapping with automatic level of detail based on distance.

  • Detail mapping for the albedo and normal maps.

  • Sub-surface scattering and transmittance.

  • Screen-space refraction with support for material roughness (resulting in blurry refraction).

  • Proximity fade (soft particles) and distance fade.

  • <