Attention: Here be dragons
This is the latest
(unstable) version of this documentation, which may document features
not available in or compatible with released stable versions of Godot.
Checking the stable version of the documentation...
Quaternion¶
A unit quaternion used for representing 3D rotations.
Description¶
Quaternions are similar to Basis, which implements the matrix representation of rotations. Unlike Basis, which stores rotation, scale, and shearing, quaternions only store rotation.
Quaternions can be parametrized using both an axis-angle pair or Euler angles. Due to their compactness and the way they are stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors.
Note: Quaternions need to be normalized before being used for rotation.
注釈
There are notable differences when using this API with C#. See C# API differences to GDScript for more information.
Tutorials¶
Properties¶
|
||
|
||
|
||
|
Constructors¶
Quaternion ( ) |
|
Quaternion ( Quaternion from ) |
|
Quaternion ( Vector3 arc_from, Vector3 arc_to ) |
|
Quaternion ( Vector3 axis, float angle ) |
|
Quaternion ( Basis from ) |
|
Quaternion ( float x, float y, float z, float w ) |
Methods¶
angle_to ( Quaternion to ) const |
|
dot ( Quaternion with ) const |
|
exp ( ) const |
|
from_euler ( Vector3 euler ) static |
|
get_angle ( ) const |
|
get_axis ( ) const |
|
inverse ( ) const |
|
is_equal_approx ( Quaternion to ) const |
|
is_finite ( ) const |
|
is_normalized ( ) const |
|
length ( ) const |
|
length_squared ( ) const |
|
log ( ) const |
|
normalized ( ) const |
|
slerp ( Quaternion to, float weight ) const |
|
slerpni ( Quaternion to, float weight ) const |
|
spherical_cubic_interpolate ( Quaternion b, Quaternion pre_a, Quaternion post_b, float weight ) const |
|
spherical_cubic_interpolate_in_time ( Quaternion b, Quaternion pre_a, Quaternion post_b, float weight, float b_t, float pre_a_t, float post_b_t ) const |
Operators¶
operator != ( Quaternion right ) |
|
operator * ( Quaternion right ) |
|
operator * ( Vector3 right ) |
|
operator * ( float right ) |
|
operator * ( int right ) |
|
operator + ( Quaternion right ) |
|
operator - ( Quaternion right ) |
|
operator / ( float right ) |
|
operator / ( int right ) |
|
operator == ( Quaternion right ) |
|
operator [] ( int index ) |
|
operator unary+ ( ) |
|
operator unary- ( ) |
Constants¶
IDENTITY = Quaternion(0, 0, 0, 1)
The identity quaternion, representing no rotation. Equivalent to an identity Basis matrix. If a vector is transformed by an identity quaternion, it will not change.
Property Descriptions¶
float w = 1.0
W component of the quaternion (real part).
Quaternion components should usually not be manipulated directly.
float x = 0.0
X component of the quaternion (imaginary i
axis part).
Quaternion components should usually not be manipulated directly.
float y = 0.0
Y component of the quaternion (imaginary j
axis part).
Quaternion components should usually not be manipulated directly.
float z = 0.0
Z component of the quaternion (imaginary k
axis part).
Quaternion components should usually not be manipulated directly.
Constructor Descriptions¶
Quaternion Quaternion ( )
Constructs a default-initialized quaternion with all components set to