Up to date

This page is up to date for Godot 4.2. If you still find outdated information, please open an issue.


Inherits: Object

Provides access to engine properties.


The Engine singleton allows you to query and modify the project's run-time parameters, such as frames per second, time scale, and others.






















get_architecture_name ( ) const


get_author_info ( ) const


get_copyright_info ( ) const


get_donor_info ( ) const


get_frames_drawn ( )


get_frames_per_second ( ) const


get_license_info ( ) const


get_license_text ( ) const


get_main_loop ( ) const


get_physics_frames ( ) const


get_physics_interpolation_fraction ( ) const


get_process_frames ( ) const


get_script_language ( int index ) const


get_script_language_count ( )


get_singleton ( StringName name ) const


get_singleton_list ( ) const


get_version_info ( ) const


get_write_movie_path ( ) const


has_singleton ( StringName name ) const


is_editor_hint ( ) const


is_in_physics_frame ( ) const


register_script_language ( ScriptLanguage language )


register_singleton ( StringName name, Object instance )


unregister_script_language ( ScriptLanguage language )


unregister_singleton ( StringName name )

Property Descriptions

int max_fps = 0

  • void set_max_fps ( int value )

  • int get_max_fps ( )

The maximum number of frames per second that can be rendered. A value of 0 means "no limit". The actual number of frames per second may still be below this value if the CPU or GPU cannot keep up with the project logic and rendering.

Limiting the FPS can be useful to reduce system power consumption, which reduces heat and noise emissions (and improves battery life on mobile devices).

If ProjectSettings.display/window/vsync/vsync_mode is Enabled or Adaptive, it takes precedence and the forced FPS number cannot exceed the monitor's refresh rate.

If ProjectSettings.display/window/vsync/vsync_mode is Enabled, on monitors with variable refresh rate enabled (G-Sync/FreeSync), using a FPS limit a few frames lower than the monitor's refresh rate will reduce input lag while avoiding tearing.

If ProjectSettings.display/window/vsync/vsync_mode is Disabled, limiting the FPS to a high value that can be consistently reached on the system can reduce input lag compared to an uncapped framerate. Since this works by ensuring the GPU load is lower than 100%, this latency reduction is only effective in GPU-bottlenecked scenarios, not CPU-bottlenecked scenarios.

See also physics_ticks_per_second and ProjectSettings.application/run/max_fps.

int max_physics_steps_per_frame = 8

  • void set_max_physics_steps_per_frame ( int value )

  • int get_max_physics_steps_per_frame ( )

Controls the maximum number of physics steps that can be simulated each rendered frame. The default value is tuned to avoid "spiral of death" situations where expensive physics simulations trigger more expensive simulations indefinitely. However, the game will appear to slow down if the rendering FPS is less than 1 / max_physics_steps_per_frame of physics_ticks_per_second. This occurs even if delta is consistently used in physics calculations. To avoid this, increase max_physics_steps_per_frame if you have increased physics_ticks_per_second significantly above its default value.

float physics_jitter_fix = 0.5

  • void set_physics_jitter_fix ( float value )

  • float get_physics_jitter_fix ( )

Controls how much physics ticks are synchronized with real time. For 0 or less, the ticks are synchronized. Such values are recommended for network games, where clock synchronization matters. Higher values cause higher deviation of the in-game clock and real clock but smooth out framerate jitters. The default value of 0.5 should be good enough for most; values above 2 could cause the game to react to dropped frames with a noticeable delay and are not recommended.

Note: For best results, when using a custom physics interpolation solution, the physics jitter fix should be disabled by setting physics_jitter_fix to 0.

int physics_ticks_per_second = 60

  • void set_physics_ticks_per_second ( int value )

  • int get_physics_ticks_per_second ( )

The number of fixed iterations per second. This controls how often physics simulation and Node._physics_process methods are run. This value should generally always be set to 60 or above, as Godot doesn't interpolate the physics step. As a result, values lower than 60 will look stuttery. This value can be increased to make input more reactive or work around collision tunneling issues, but keep in mind doing so will increase CPU usage. See also max_fps and ProjectSettings.physics/common/physics_ticks_per_second.

Note: Only max_physics_steps_per_frame physics ticks may be simulated per rendered frame at most. If more physics ticks have to be simulated per rendered frame to keep up with rendering, the project will appear to slow down (even if delta is used consistently in physics calculations). Therefore, it is recommended to also increase max_physics_steps_per_frame if increasing physics_ticks_per_second significantly above its default value.

bool print_error_messages = true

  • void set_print_error_messages ( bool value )

  • bool is_printing_error_messages ( )

If false, stops printing error and warning messages to the console and editor Output log. This can be used to hide error and warning messages during unit test suite runs. This property is equivalent to the ProjectSettings.application/run/disable_stderr project setting.

Warning: If you set this to false anywhere in the project, important error messages may be hidden even if they are emitted from other scripts. If this is set to false in a @tool script, this will also impact the editor itself. Do not report bugs before ensuring error messages are enabled (as they are by default).

Note: This property does not impact the editor's Errors tab when running a project from the editor.

float time_scale = 1.0

  • void set_time_scale ( float value )

  • float get_time_scale ( )

Controls how fast or slow the in-game clock ticks versus the real life one. It defaults to 1.0. A value of 2.0 means the game moves twice as fast as real life, whilst a value of 0.5 means the game moves at half the regular speed. This also affects Timer and SceneTreeTimer (see SceneTree.create_timer for how to control this).

Method Descriptions

String get_architecture_name ( ) const

Returns the name of the CPU architecture the Godot binary was built for. Possible return values are x86_64, x86_32, arm64, arm32, rv64, riscv, ppc64, ppc, wasm64 and wasm32.

To detect whether the current CPU architecture is 64-bit, you can use the fact that all 64-bit architecture names have 64 in their name:

if "64" in Engine.get_architecture_name():
    print("Running a 64-bit build of Godot.")
    print("Running a 32-bit build of Godot.")

Note: get_architecture_name does not return the name of the host CPU architecture. For example, if running an x86_32 Godot binary on a x86_64 system, the returned value will be x86_32.

Dictionary get_author_info ( ) const

Returns engine author information in a Dictionary.