Up to date

This page is up to date for Godot 4.2. If you still find outdated information, please open an issue.



游戏开发中最常见的任务之一是发射射线(或自定义形状的对象)并检查其击中的内容. 这可以产生复杂的行为, 如AI等. 本教程将介绍如何在2D和3D中执行此操作.

Godot stores all the low level game information in servers, while the scene is only a frontend. As such, ray casting is generally a lower-level task. For simple raycasts, nodes like RayCast3D and RayCast2D will work, as they return every frame what the result of a raycast is.

但是, 很多时候, 射线投射应该是一个更具交互性的过程, 因此必须存在通过代码执行此操作的方法.


In the physics world, Godot stores all the low level collision and physics information in a space. The current 2d space (for 2D Physics) can be obtained by accessing CanvasItem.get_world_2d().space. For 3D, it's Node3D.get_world_3d().space.

The resulting space RID can be used in PhysicsServer3D and PhysicsServer2D respectively for 3D and 2D.


Godot physics runs by default in the same thread as game logic, but may be set to run on a separate thread to work more efficiently. Due to this, the only time accessing space is safe is during the Node._physics_process() callback. Accessing it from outside this function may result in an error due to space being locked.

To perform queries into physics space, the PhysicsDirectSpaceState2D and PhysicsDirectSpaceState3D must be used.

在 2D 中使用以下代码:

func _physics_process(delta):
    var space_rid = get_world_2d().space
    var space_state = PhysicsServer2D.space_get_direct_state(space_rid)


func _physics_process(delta):
    var space_state = get_world_2d().direct_space_state

在 3D 中:

func _physics_process(delta):
    var space_state = get_world_3d().direct_space_state

Raycast 查询

For performing a 2D raycast query, the method PhysicsDirectSpaceState2D.intersect_ray() may be used. For example:

func _physics_process(delta):
    var space_state = get_world_2d().direct_space_state
    # use global coordinates, not local to node
    var query = PhysicsRayQueryParameters2D.create(Vector2(0, 0), Vector2(50, 100))
    var result = space_state.intersect_ray(query)

结果是一个字典. 如果射线没有击中任何东西, 字典将是空的. 如果它确实碰撞到了物体, 将包含碰撞信息碰撞:

if result:
    print("Hit at point: ", result.position)

发生碰撞时,result 字典包含以下数据:

   position: Vector2 # point in world space for collision
   normal: Vector2 # normal in world space for collision
   collider: Object # Object collided or null (if unassociated)
   collider_id: ObjectID # Object it collided against
   rid: RID # RID it collided against
   shape: int # shape index of collider
   metadata: Variant() # metadata of collider

The data is similar in 3D space, using Vector3 coordinates. Note that to enable collisions with Area3D, the boolean parameter collide_with_areas must be set to true.

const RAY_LENGTH = 1000

func _physics_process(delta):
    var space_state = get_world_3d().direct_space_state
    var cam = $Camera3D
    var mousepos = get_viewport().get_mouse_position()

    var origin = cam.project_ray_origin(mousepos)
    var end = origin + cam.project_ray_normal(mousepos) * RAY_LENGTH
    var query = PhysicsRayQueryParameters3D.create(origin, end)
    query.collide_with_areas = true

    var result = space_state.intersect_ray(query)




To avoid self-intersection, the intersect_ray() parameters object can take an array of exceptions via its exclude property. This is an example of how to use it from a CharacterBody2D or any other collision object node:

extends CharacterBody2D

func _physics_process(delta):
    var space_state = get_world_2d().direct_space_state
    var query = PhysicsRayQueryParameters2D.create(global_position, player_position)
    query.exclude = [self]
    var result = space_state.intersect_ray(query)

例外数组可以包含对象或 RID。


虽然例外方法适用于排除父体, 但如果需要大型和/或动态的例外列表, 则会变得非常不方便. 在这种情况下, 使用碰撞层/遮罩系统要高效得多.

The intersect_ray() parameters object can also be supplied a collision mask. For example, to use the same mask as the parent body, use the collision_mask member variable. The array of exceptions can be supplied as the last argument as well:

extends CharacterBody2D

func _physics_process(delta):
    var space_state = get_world_2d().direct_space_state
    var query = PhysicsRayQueryParameters2D.create(global_position, target_position,
        collision_mask, [self])
    var result = space_state.intersect_ray(query)

关于如何设置碰撞掩码, 请参阅 代码示例 .

来自屏幕的 3D 光线投射

Casting a ray from screen to 3D physics space is useful for object picking. There is not much need to do this because CollisionObject3D has an "input_event" signal that will let you know when it was clicked, but in case there is any desire to do it manually, here's how.

To cast a ray from the screen, you need a Camera3D node. A Camera3D can be in two projection modes: perspective and orthogonal. Because of this, both the ray origin and direction must be obtained. This is because origin changes in orthogonal mode, while normal changes in perspective mode:


要使用相机获取它, 可以使用以下代码:

const RAY_LENGTH = 1000.0

func _input(event):
    if event is InputEventMouseButton and event.pressed and event.button_index == 1:
          var camera3d = $Camera3D
          var from = camera3d.project_ray_origin(event.position)
          var to = from + camera3d.project_ray_normal(event.position) * RAY_LENGTH

请记住,在 _input() 期间空间可能被锁定,所以实践中应该在 _physics_process() 中运行这个查询。